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ON THE MOTION OF A HEAVY HOMOGENEOUS ELLIPSOID 
ON A FIXED HORIZONTAL PLANE* 

A.P. MARKEEV 

Periodic motions without sliding of a heavy homogeneous ellipsoidofnearly spherical 

shape on a horizontal plane is investigated. Existence of periodic motions of the 

ellipsoid relative to its center of mass is established on the basis of known solu- 

tions of the problem of the homogeneous sphere of steady motionsonaplane. Periodic 

motions are determined, their stability is investigated, reaction of the plane is 
calculated, traces of the ellipsoid-plane contact point on the plane and ellipsoid 

surface and the ellipsoid orientation in absolute space are determined. Motion of 
such ellipsoid on an absolutely smooth plane is analyzed, and shown to be perpetual 

(for all times) and close to regular precession about the moment of momentum vector 

of constant length and precessing at constant angular velocity about the vertical to 

which it is inclined at a constant angle. 

The problem of motion of a solid body on a fixed horizontal plane was investigated up to 

now in detail in /l-10/. The existence and stability of steady motions of a heavy solidbody 

were the subject of detailed analysis whose most general results appear in /ll-14/. 

1. Let us consider the motions of an ellipsoid in the fixedsystemofcoordinates OXI'Z 

with origin at some point 0 of the (supporting) horizontal plane, and its 02 axis directed 

vertically upward. We denote the unit vector of the 02 axis by nwhich is the unit vector 

of the external normal to the ellipsoid surface at point Q of the ellipsoid contact with the 

plane. 

Axes of the coordinate system G~yz with origin at the ellipsoid center of mass C are 

directed along its principal axes. In that coordinate system the ellipsoid surface is defined 

by the equation 

f s x21a2 + y21b2 + Sic2 = 1, n = grad f/l grad f 1 (1.1) 

and the radius vector GQ has the components x, Y, z. 

Orientation of the ellipsoid relative to the fixed coordinate system is specified by 

Euler's angles Q, 8, 'p. The relative orientation of the systems of coordinates OS1-Z and 

Gxyz are also detemlined by the matrix of directional cosines I/aik 11 (i, k = I,& 3) that are ex- 

pressed in the conventional manner in terms of Euler's angles, and 

asI = -b2c’x/l, a32 = -cc2a2y/A, as3 -= -aa2b"z/1 (1.2) 

A =(b4C"x' t_ cla4y' r. a4b'zz)'l* 

Denoting by V, and o.the vectors of the ellipsoid center of mass velocity and of the 

vector of its instantaneous angular velocity, respectively,for the condition of absence of 

sliding we have 

Vc--ox GQ=O (1.3) 

The equations of motion of the ellipsoid relative to its center of mass are expressed in 

the form of Gibbs-Appel equations /15/ 

(A + ye + 2') p' - xyq’ - xzr’ = (B - C) qr -I- (1.4) 

(0, GQ)(x' - yr + zq) - (GQ, GQ’) p + ga2 k’ - b?yz/A 

h-v, xyz, abc, ABC) 

A = (b2 + ca)/5, B = (c’ + a2)/5, C = (a" + b2)/5 

where p, q,r are projections of vector o on axes Gx,Gy,Gz,g is the free fall acceleration, 

and A B, C are the principal central moments of inertia of the ellipsoid whose mass is as- 

sumed equal unity. The two omitted equations are obtained by the simultaneous cyclic permuta- 

tion of symbols appearing in braces. The system of Eqs.cl.4) is closed by Poisson'sequations 
~-- - 
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a31’ = ad - ad, asa’ = a83p - a3Lr1 a33 = a,lq - a,,p 

eat express the OZ axis directional constancy in the absolute space. Using (1.1) and (1.2) 

we can write Poisson's equation in the form of the following three equations in z, Y, z: 

x’ = yr - zq + a’c’ ’ - ” (2’ - a’) zq + f$$ (xc - ~2) yr + * xyzp (xyz, pqr, aoc) (1.5) 

which by virtue of identity (1.1) are interdependent. The system of Eqs.(l.4) and (1.5) ad- 

mits the energy integral 

'i,V$ + 'i, (A$ + Bq2 + W) * gzc = h = cum t (1.6) 

where ZC is the distance of the ellipsoid center from the horizontal plane, defined by 

ZG = (a2a312 -t b2a,,2 i- i’a,n”)“’ (1.7) 

2. Setting in (l.l), (1.4), and (1.5) a = b=c = R we obtain the problem of the homo- 
geneous sphere moving without sliding on a plane. 

Generally, excepting the case of pure rotation about the vertical axis, the vector of 
instantaneous angular velocity e of the sphere is constant in magnitude and direction, the 
sphere center of mass moves uniformly and rectilinearly in a direction nomlal to o, the 
trace of the contact point on the plane is a straight line and on the sphere surface is a 
circle of constant radius p, lying in a plane normal to o at constant distance d,from the 
sphere center (Fig.l), the normal reaction of the (supporting) plane is equal to the sphere 
weight, and the friction force is zero. 

Suppose the ellipsoid is a three-axial one but close to a sphere of radius H. As the 
small parameter we take E= max {I a - b]lR, 1 b-cl/RI Ic-aVR}. Let us investigate the el- 
lipsoid periodic motions relative to its center of mass in the case of Efo. When s=O 
these motions become the defined above steady motions of a sphere. 

It can be shown that Eqs.(1.4) and (1.5) are not changed by the following three substitu- 
tions: 

t, p, q, r, x, y, z+ - t, -P, 9, r,- 5, Y, 2 (2.1) 

t, p, 4, rr X,Y, z + -t, P, -q, r, 5, -y, = 

t, p, q, r, 5, y, z + - t, p, 4, - r, x, y, - z 

These properties of symmetry will be subsequently used in investigations of the problem of ex- 
istence of periodic motions and for constructing these by the method developed by Cesari /16/ 
and Hale /17/. 

For the subsequent analysis it is expedient to substitute in Eqs.(l.4) and (1.5) the new 
variables c,p,y. for variables 2, Y, z . For this we first effect the following two st-G:titu- 
tions: 

x = ax’, y = by’, z = cz’ 

5’ 

I II 

sin/3 cosacosfi sinacosfi 5 

y’ = -cosp cosasinp sinasinfi n 
2’ 0 - sina cosa Ill 5 

sina=vm/o,, cosa=r/o, sinp=q/vm 

cosB=PlWT-T (u=I/pa+qa+fz) 

(2.2) 

(2.3) 

The substitution (2.3) of variables effects the passing from the system of coordinates Gx' 
y'z“ to the system GE$ whose axis Gc is parallel to vector 

to the plane Gz'~, and axis GQ 
IO, the axis GE is normal 

forms an obtuse angle with axis G:’ ; a.is the angle between 
vector o and axis 
axis Gs'(see Fig.2, 

Gz’, and fiis the angle between the projection of o on plane Gz'Y' and 
where vector OI is shown passing through the center of mass , while in 

fact it passes throught the point Qof contact between the ellipsoid and the plane). 
A further substitution of variables using formulas 

5 = psin y, n = p 03s V 

yields Eq.(l.l) and equations for 5 and y of the form 

52 + pz = 1 

c=[(c-b)rqx’+(a-c)pry’+(b-a)qPz’lhf 
[(c - b) py’z’ + (a - c) qz’x’ + (b - a) rx’Y’h + . . 

y’ = 0 - (F1 cos y + P, sin y)/(q) + . . 
hl = (14-155~)/(7o~), h, = ~(2 - 55’ - 5g/(02R))/(7R) 

(2.4) 

(2.5) 
(2.6) 

(2.7) 
(2.8) 
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mmsin PC) -t r’sina[ -t_ 0 c0sa cospg, -; 
cd cosasin [3g, - wsin ag, 

gl = 2 (C - b)x’y’r’plR + (a - c)(2x” - 1) z’qlR 
(22’2 - l)y’r~Rkw,g,, S’Y’Z’, pclr} 

Y’ 

Fig.1 Fig.2 

t (b - a) :4 

The quantities x’, y’, z’. 

5, n,a, f3 must be expressed 
in terms of p: Q.'. C, t7? Y in 
conformity with fortiulas (2.3) 
and (2.4). The dots (in 
formulas (2.6) and (2.7) de- 
note terms of order Ed and 
higher. 

To define the ellipsoid 
motion in the new variables 
it is necessary in the system 
of Eqs.cl.4) and (1.5) to 
s>&stitute Eqs.(2.6) and (2.7) 
for Eqs.(l.S), and the equal- 
ity (2.5) for (1.1). 

When F _-0 the quantit- 

ies Y, 4, r, 6, P, :" in allsolu- 
tions' of the transformed 
system of equations are con- 
stant, and the rmchanicaland 
geometric meaning of the new 

variables i,,o,y becomes clear. It we take the sphere radius as the unit of length, then IJ 
is the radius of the circle representing the trace of the contact point on the sphere and j _ ! 
is the distance d of the plane of that circle from the sphere center fFig.1); and 7'is the 
angle between the projection of GQ on the plane of the trace circle and some fixed in that 
plane direction, with y' equal to the angular velocity wof motion of the contact point al- 
ong its trace on the sphere. 

3. On the basis of formulas (2.2) - (2.4) it is possible to obtain from the energy in- 
tegral (1.6) and the geometric integral (2.5) c and p in the form of functions of variables 
I-'> g, rz yand parameter h. Then, substituting into Eqs.(l.4) .r. S/Z expressed in terms of 

5, p, y and solving them for 11'. o', I.' , we obtain a system of three equationswhose right-hand 
sides are functions of p, ii. r, v and parameter fz and are k-periodic with respect to the 

angular variable 1' 
To obtain the geometric pattern of motion we pass again, using (2.7), to the new in- 

dependent variable y. Calculations show that then the system of equations for p,(i,r is of 
the form 

dlJ 5 -=m 
dl' 

{(c - h) (& + 3‘D*z'y' + 2pogs’y’z’ + (3.i) 

%_y$' + +qpJ + (n_-)(rl'.L.'y'+ 2g&Z + ?qoZ(Y- I)Z')" 

(6 - a) (pqtiz’ $ 2rpx’y’ + 2roc (x” -- 1) y’)} + 1 

{pqr, x’y’, z’, abc) 

For the determination of the 2x-periodic in 'y solutions of system (3.11 we make use of 

the property of symmetry of (2.1). We shall consider only the second symmetry property,since 
the other reduce to it by a cyclic re-designation of axes of system Gxyz. 

Equations (3.1) have the property E (see /17/) with respect to Q= diag (1, --I, 1) which 
means that it is not affected by the substitution V,p, Q,r-+ -_Y, p, - 4,'. Periodic solutions 

of system (3.1) are obtainedinconformity with the following algorithm /17/. 
Consider the system of equations 

z' = EZ (t. z, E) (3.2) 

where E is a small parameter, and function z is analytic in z and &,and is zn-periodic in ! 
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and continuous. When e= o solutions of system (3.2) are constant. All of its periodic solu- 

tions generated when E+O from its constant solutions can be obtained as follows. We set 

z(ol = a* , z@+l) = a* + e 
f 7 

yz (r zfi’) (t),e) - <z (t, 8) i% &)>I dt (3.31 

where the angle brackets denote averaging with respect to the variable 1. Successive ap- 

proximations of (3.3) determine the approximate value of the periodic function r(t,a*,e) with 
an accuracy to terms of order &k+l inclusive. This value is a function of the arbitrary con- 

stant vector a*. 
Let us construct the system of branching equations 

(2 (&L(k) @,a', E),E)> = 0 (3.41 

which is used for determining the generating solution, i.e. the constant vector a* as a func- 
tion of P. If system (3.4) has a solution for which the Jacobian is nonzero, then by sub- 
stituting that solution into @+l) we obtain a 2n-periodic solution of system (3.2) accurate 
to Eb+l inclusive. 

When k=O we have 

i+) = a* + c‘ 
f 

iz (t, a*, 0) - (2 (t. a*, 0),] dt (3.5) 

where a* satisfies the system of equations 

tz0, a*, 0) = 0 (3.6) 

Frequently (and that is the most interesting case in applications) the Jacobian for solu- 
tions of system (3.4) vanishes. Then the property E of system (3.21 enables us to obtain the 
sufficient conditions of periodic solutions existence that correspondtosomeparticularchoice 
of vector a*. Thus, if the j-th element of the diagonal matrix Q is equal i-1, the ,--th 
equation of the branching system (3.4) is satisfied (in all approximations with respect to f) 
by any vector ai for which Qa* = a* /17/.Because of this a number of equations vanish from 
(3.4), and this enables us to determine the conditions of existence of periodic solutionswhen 
the Jacobian for some solutions of system (3.4) is zero. 

Calculations show that the indicated Jacobian of the branching system (3.6) is identically 
zero in the case of Eqs.13.1). However, since system (3.1) has the property E with respect to 
matrix Q. we can set 

a** =(p*, 0, r*) (3.7) 

Since for such selection of I* the first and third of equations of the branchingsystem 
(3.4) is identically satisfied , it is only necessary to analyze the second equation for arbit- 
rary p*,P. 

Restricting the solution derivation to the first approximation with respect to y , we 
consider the second of Eqs.(3.6) which is obtained by averaging the right-hand side of the 
second equation of system (3.1) with respect to Y with p=p*, q=o, r= r*. In the derivation 
of the first approximation of p. q, r the quantities 5 and 0 appearing in ~',y',z' can be as- 
sumed constant, i.e. I;* and p*. The latter satisfy relations <*2+ Pan= 1, p* > 0. , being 
otherwise arbitrary. The averaging yields the branching equation 

p*r*F (p*. o*) = 0 (3.8) 

F (p*, o*) = lop*’ - 5 (6a* + 5)p*’ + 4 (5u* -+- 6) 

(7*=&j, o* = J/fp*2 .+ y*z 

To analyze Eq.(3.8) we first consider the equation p(p*, O*)Z 0 which implies that 

(3.9) 

where p* varies within me interval from zero to unity. .- 
the inequalities P*>.)/'Is and o*<'!31/iOgifi 

Function F(p*, o*)can only vanishwhen 
are satisfied, and the derivative 

when F(p*, w*)= 0. 
drfa0* f 0 

Hence the roots of equation F(p*, w*)= 0, if any, are simple. 
The branching equation (3.8) has solutions of three types for which the Jacobian is non- 

zero. For solutions of the first type r* 
for solutions of the second type 

-0 and p* is arbitrary but such that F(p*. a*)# 0; 
p 

of the third type F(p*, 
* = 0 and r* is arbitrary but F(O*. w*)#O; for solutions 

o*) = 0 and p* + 0, r* # 0. 
-periodic in y solutions of the system of Eqs.(3.1). 

When az0, these solutions generate Zn- 



442 

The proof of existence of periodic solutions of Eqs.(3.1) can be similarly obtained by 
using the property E relative to matrices diag(-l,f,l) and diag(1.$,_l). In the latter case 
it is necessary first, to substitute the quantity z/Z! .- 17 for Y. 

There exist, thus, two different sets of periodic motions of the ellipsoid. Periodic 
motions of the first set pass for F.Z 0 to motions in which vector &is parallel to one oi 
the ellipsoid axes. In such motions when e=U the rolling and rotating ellipsoid (sphere) 
contacts the horizontal plane along the (periphery of) cross sectionzllel to its principal 
cross section. Periodic motions of the first set exist if cd)* > ‘!,I/lOg!R, and f'* assumes any 
value from zero to unity, or when c,)* ( '/,m,and p* and o* are not related by formula (3.9). 
In the case of periodic motions of tne second set with C=O the projection of &on one of the 
ellipsoid axes is zero and on the other two nonzero. In such periodic motions when r=O the 
ellipsoid (sphere) contacts the plane along the (periphe-y of) of its cross section parallel 
to one of its axes and intersecting the other two axes. Periodic motions of the second Set 

exist if o* ('/,m and P*>v8,provided that the relations of the equality type, i.e. 
(3.91, which link the generating values of parameters (I) and $1, Periodic motionsofthesecond 
set will not be further considered, since they can be realized only in exceptional cases. 

4. Let us construct the periodic solutions of the first set that for s-_-i1 becomes the 
generating solution 

1, z p*, "i=~0,r=-_0,P-=7{l*, CC ;* 
(4.1) 

For definiteness we assume p*to be positive. To obtain the first approximation of solu- 
tion it is necessary to substitute in the right-hand sides of system (3.1) the values of 11. q% 

I ? r r, 2 , y 3 2 that correspond to the generating solution (4.11, reject terms of higher arder , 
above first, with respect to E; and integrate. As the result we have 

p 3 p* - q (c - 6) (2 - p*2 + u*) cos 2y (4.2) 

9""- l&zfl 5wcp*5*{12(a-~)n*siny+~c-b)[3(p*Z - It) sin +f -- 

1f the case of an ellipsoid of revolution (b=c) the projection p of the instantaneous 
angular velocity vector o on the axis of symmetry is in the first approximation constant,the 
end point of vector 0 lies in a plane normal to the axis of symmetry and moves 3b0Llt the 
latter in a circle or radius 10 1 a -c 1 w*p*c*t~*/(7R) at the angular velocity Y', 

Let us determine the coordinates X, y, z of the contact point Q of the ellipsoid and the 
plane in terms of y. First, using (2.7) we determine function 5 in the first approximation 
with respect to E 

+j*_Z& 5*p*2(5P*a-5a*-3)ccs211 (4.3) 

Function P is then determined using (2.5). 
It follows from (4.3) and (2.5) that in the case of an ellipsoid of revolution (C -6) the 

quantities 5 and P are constant in the first approximation or, when the ellipsoid rolling is 
such that it touches the plane along (the periphery of) its principal cross section Gyz(<* = 

* and (8 are linked by the relationsh&_ 5P*'- 
sib?: ~~~nw~~ rnequiilities ti* >gm 

S&-3 =O which is only pos- 
and p* > ]L"iS are simultaneously satisfied. 

Now, from (2.3), (2.4), (2.5), (4.2), and (4.3) we obtain r', y', z' with an accuracywithin 
terms of first order with respect to'~ 

-2‘=<* $. %[30 (b-r_ c- 2a)o* +(c--- 6)(5P**- Co* - 51~cosZy] (4.4) 

To obtain 5, y,z it remains to use formulas (2.2). 
The form of point Qtrace on the ellipsoid surface is shown in Fig.3. It is contained 

between two planes parallel to plane Gyz separated by the distance 

!l,z = p*2 I(c - b) <* ($I** - 15 u* - 52) \/Zl 

The trace touches these planes when sin 2y= 0. The direction of motion of the contact 



443 

point Q along its trace onthe ellipsoid is indicated in Fig.3 by an arrow. 

5. The time period T of the constructed periodic motions of the ellipsoid is obtained 
from (2.7) in the form 

T- 2n * _ 55*35* 
o* c 

7 (6 + c - 2a)i . ..] 

From (2.7) we also obtain angle 7 as a function of time 

V=Y*+$t+L& [5p*'- 15(0* + 2)p**t- 2(5u* + 3)]cc+ + .,. 

where y* is an arbitrary constant. 

6. Let us determine the trace of the contact point Q on the plane. Let X,Ybe the co- 
ordinates of point Q on the plane, and 6 be the angle between the tangent to its trace on the 
plane and the OX axis of the fixed coordinate system (or, what is the same by virtue of ab- 
sence of sliding, K is the angle between the tangent to the traceonthe ellipsoid at point 
Q and the OX axis). Then 

dXlds = cos 6, dYlds = sin 6 (6.1) 

where dS is an element of length of the trace arc on the plane (or on the ellipsoid). 
Let v and w be the vectors of velocity and accelerationofpoint Q in its translation 

along the trace on the ellipsoid, QP be the vector drawn from point Q to the center of the 
trace curvature, and k be the trace curvature at point Q. Then 

(6.2) 

Note that for the determination of angle s/3/ 

6' = w, - kgv; co, = - (w, n), k, = k sin (QP, n) (6.3) 

where wB is the angular velocity of the ellipsoid rotation and k,,is the geodesic curvature 
of the trace at point Q /la/. 

If we pass to the new independent variable y, the differential equation for 6 for the 
derived periodic motions may be written as 

~=~l,p*R+211?COS2y+..., {,I= 5 
b-j--h 

7p*H' <*a* (6.4) 

Il.? = %5*(5a* +2/t) 

Noting that dsldy differs from p*fi by a quantity of the first order of smallness and 
setting the initial value of 6 at zero, we obtain from (6.4) 

6 = p,s + +&n (2sl(p*R)) f . . . (6.5) 

Retaining in the right-hand sides of Eqs.(6.1) terms of order of smallness not higherthan 
in the first, we obtain equations whose solutions accurate to within terms of the first order 
of smallness are of the form 

X - X* = pl-'sin p,S + 'i, pz p*R sin pIs cos (2s/(p*R)) (6.6) 

y - y* = -pl-' cos pls - lip p2p* R cos PI s cos(2s/(p*R)) 

where X*,1'* are arbitrary 
constants. Equalities (6.6) 
define in parametricform the 

Fig.3 Fig.4 

\ at point .Y',Y* (when 5' = 0 
the ellipsoid rolls touching 
the plane by /the peripheryof/ 
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its principal cross section and the trace of the contact point is a straight line). Asexi~?rted, 
in the case of a sphere (6 = C= a) the circle degenerates into a straight line. The direction 
of motion of point Q is determined by the sign of c*(b - a). For instance, when C* ~0 (as in 

Fig-j), then for n> h (a -prolate ellipsoid) the contact point motion along its trace crrcle 
is counterclockwise, and in the case of a<6 (an ablate ellipsoid) it is clockwise. 

Let P, = 0. This is possible when the ellipsoid semiaxes satisfy the relation I, +- ( zu 
or when a* = 0, i.e. when the ellipsoid is weightless. The latter case is not a mathematical 
abstraction, since, for example, to it reduces the case in which o*. is a quantity of an order 
of smallness not lower than the first, which shows that the ellipsoid potential energy is con- 
siderably lower than its kinetic energy of rotation about its center of mass. when {LI : (1 we 
have 

Y = y* ~-- 'l&p* R cos[:! (X - X*)/(p*H)j 

i.e. the contact point trace on the plane is a sine curve. This result was obtained in /3i 
for a weightless ellipsoid of revolution close to a sphere. 

Generally, when ~1#0,~2f0 the traceonthe planeis anarcof "spoiled" circleof radius 

1 pal--‘. Small oscillations of slowly varying amplitude '1, p#*ff sin fllS.are superposed on the 
circle. The contact point trace on the plane is shown in Fig.4 in a distorted scale. 

7. Let us determine the ellipsoid orientation relative to the fixed coordinate system 

OXYZ for the derived periodic motions. The nutation angles 0 and of proper rotation 'p are 
calculated using formulas (1.2), (2.2) and (4.4), and the expressions for directional cosines 

in terms of Euler's angles 

a3, _Y sin 0 sin (p, a3z m= sin 0 Cos cp, a33 = COS 0 (7.1) 

Carrying out the necessary calculations, we obtain 

us, = - g* - ?dZ$ c*p (loo* m+ 7) _ 5 G c*~*~(~*~ - 3u* - 6) cos 21’ + . (7.2) 

a-$> = p* sir1 :’ ~- -&- { - 5 (c - 6) p*’ - [40 (a - c) u* -f 

(c - h)(5o* - 49)- 28(6 - a)]p*2 -f 4qa - c)u* - 28(b - n)S 

(c - b)(5o* - 37))siny - sp* [5p*‘- 5(3u* + 7)~*~ + 

3 (50* + 3)] <ill 3y $ . 

(7.3) 

a33=Q*coSY - 28R p* (5 (c - 6) p*4 + 140 (b - a) u* -; 

(c - b)(5o* -49)- 28(a -cc)1p*2-- 40(6- a)u* f 

28 (a - c) - (c - 6) (5u* - 37)) co.’ ,’ - 

csP*15P **~-5(3a*+ 7)p**+3(5u* +3)]cos3y+... 

(7.4) 

Formulas (7.2)- (7.4) define the dependence of the orientation of the fixed verticalline 

relative to the ellipsoid on y. It follows from (7.2) that the angle between the vertical 

and the Gx axis varies about its constant value with a frequency close to twice the angular 

velocity of the unperturbed motion (when EZO). The oscillation amplitude of that angle 

cosine is 5p*21(c-_)5*(P*"-3u*-6)1/42H. In the case of an ellipsoid of revolution (c =b) 

these oscillations are absent. They are also, obviously, absent when the rolling ellipsoid 

touches the plane along (the periphery of) its principal cross section (c* = 0). 

The precession angle II, can be obtained by integrating Euler's kinematic equations. How- 

ever it is possible, in conformity with /3/, to avoid integration. Let c and r beunitvectors 

directed along the line of nodes and that of the tangent to the trace of point Qon the ellip- 

soid, respectivley. In the coordinate system Gsyz we have 

eT=(cos(F, - sin '0, 0), rT = (s'iu, y'iv, 0) (7.5) 

The angle between e*and T is equal $ - h. Hence it follows from (7.5) that 

COS(Q -- 6) = (.Z.'COS v - y'sin cp+ (7.6) 

In determining angle Qwith an error of order E it is necessary to set 5 = PIP*& and 

calculate the right-hand side of (7.6) with E =O. We obtain 

cos (3 - PLIp*RY) = - <* cos v/ VI - p* acos2y (7.7) 

Angle II, is determined from this with an error of order E in the interval of y variation 

of order e-l. Angles I3 and pare determined from (7.2)-(7.4) for any y with an error of 
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8, Consider the normal reaction N and friction force Fat the ellipsoid pointofcontact 

with the plane. The determination of these quantities is the necessary part Of solution of 

the motion problem of a solid body on a fixed or moving surface. The conditionthatthemoving 

body and the surface have at every instant of time one common point implies a nonholding link, 

so that at the instant when the normal reaction of the surface passes through zero, the body 

may free itself of that link. In the investigated here problem the ellipsoid may jump above 

the plane, and the motions determined on the assumption of contact between the ellipsoid and 

plane loose their meaning. 
Further,the friction force must be determined, since its value obtainedonthe assumption 

of absence of slip may prove to exceed the force developed at the contact point of the body 

and plane for a given specific friction coefficient_ This means that slip will occur, and 

the calculations based on the assumption of its absence are devoid of real mechanicalmeaning. 
We obtain the plane reaction using the theorem on the change of momentum 

We= - gn + N + F (8.1) 

where WC is the acceleration of the ellipsoid center of mass. Using (1.31, (4.2), (7.2)- 

(7.4), from (8.1) we obtain 

J!T g + li,(c- b) a*2 p*2[5 (a* - 1)p*2- (5u* + 9)] x coszy + . (8.2) 

It is then possible to calculate the friction force which is a quantityofthe firstorder 

of smallness with respect to E. 
Formula (8.2) implies that for a given N* and fairly small Ic - b 1 the normal reaction 

N differs only slightly from the ellipsoid weight, hence jumping of the ellipsoid over the 

plane does not occur. The friction force necessary for preventing slipping of the ellipsoid 

can be obtained even at low friction coefficients. 
For given semiaxes of the ellipsoid its angular velocity CC)* must not be high, since In 

conformity with (8.2) the normal reaction A' may be zero for considerable O* (of order I/giafi). 

For the obtained periodic motions of the ellipsoid the velocity of its center of mass is 

defined by 

(8.3) 

Projection p of angular velocity won the Gz axis, the angle between that axis and the 

vertical, the center of mass velocity, and the normal reaction N of the plane reach their 

extremal values simultaneously at sin 2y=O). At these instants of time the trajectory of con- 

tact point Qpass on the ellipsoid and the plane through extremal values. 

9. Let us investigate the stability of the obtained periodic motions of the ellipsoid 

with respect to the perturbed variables p, 4, r, 5. Presence of stability means thatatsmall 

initial deviations of quantities p,~,r, 5 from their values in unperturbed motion defined by 

formulas (4.2) and (4.31, the trace of the contact point on the ellipsoid surface, the in- 

stantaneous angular velocity vector and its orientation relative to the ellipsoid (hence re- 

lative to the absolute space) vary only slightly. 

We investigate stability in the first approximation. The quantity y can be taken, by 

virtue of its monotonic increase with increasing t, as the independent variable. Denoting 

by 51. 52, 13 t XI the perturbations of quantities p, q, r , ; , respectively, and linearizing 

Eqs.(2_7) and (3-l), we obtain 

dxldy = A, (1') K I (XT = (xl, ~2. x3, ~4)) (9.1) 

where the elements of matrix A, are of the first order of smallness with respect to s, are 
2n-periodic in y, and contain p*, (I)* as parameters. 

We present the fundamental matrix X(y) normalized by the condition X(0) -E, where E 
is the unit matrix, in the form of series 

X (v) == E + X, (v) + . . . (9.2) 

where ?L, (0) = 0. From (9.1) and (9.21 we have 

X.1 (v) = i A,(t) dt, X(2n)= E - Zn(A,) +.. 
0 

When e =O , the characteristic indices are obviously zero. Hence the characteristic in- 
dices of system (9.1) can be determined as the eigenvalues of matrix 

(2n)-'In X(21x) = (23x-l In (E i- 2n (A,) + . ..) = (A,> 4~ _.. 
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The problem of stability in the first approximation is, thus, reduced to the investiga- 
tion of stability of system (9.1) with matrix A,(y) averaged with respect to y.Calculations 
show that the averaged system (9.1) is 

dx,ldy = 0, dx,idy = (a - c) F (p*, co*) x31 (1411) 

dx,/dy = (b - a) F (p*, w*) x,l(14R), dx,ldy := 0 
(9.3) 

where terms of order higher than the first with respect to E have been omitted. Function 
F(o*, a*) do not vanishes in conformity with the condition of existence of the investigated 
set of periodic motions. Equation (9.3) is such that 

h2ClhZ_ (a--)@--a) 
i, 196Rl 

FZ(p*, o*fl = 0 

when (a - c) (b - a) > 0 , Eq.(9.4) has a root with a positive real part, while EOK ((1 - c‘l 
(b - a)( 0 it has a pair of pure imaginary roots and a pair of zero roots to which obviously 
correspond simple elementary divisors. 

Hence in the case of fairly small distinction of the ellipsoid from a sphere the follow- 
ing statement is true. If in the generating motion the ellipsoid rotates about the axis paral- 
Lel to its semimean axis, the considered periodic motion is unstable , if however the rotation 
is about the semimajor or semiminor axes of the ellipsoid, there is stability in the first 
approximation (and when terms of second and higher order with respect to E are neglected in 
(9.1)). 

10. Let the plane on which the ellipsoid is moving be absolutely smooth, then the con- 
sidered mechanical system is holonomic and has five degrees of freedom. For the investigation 
of motion we can take as the independent generalized coordinates three Euler's angles and the 
two coordinates X,,Yc of the ellipsoid center of mass relative to the fixed coordinatesystem 
OXYZ. The coordinate ,$ is expressed in terms of Euler's angles in conformitywith formulas 
(1.7) and (7.1). The first three of XC, Yc,*, 8, cp are cyclic. This implies that Xe',Y' are 
constant, i.e. the projection of the ellipsoid center on the horizontal plane moves uniformly 
and rectilinearly; moreover, the momentum f~ that corresponds to the generalized coordinate 
$ is also constant, which shows the invariability of projection on the vertical of the ellip- 
soid moments vector relative to its center of mass, i.e. f, --Apn~, -i J?@z,, t?t-~~:~ .= cons:t. 

Fig.6 

Presence of the three cyclic coordinates enabl.es us, using the Routh algorithm,toreduce 
the problem of ellipsoid motion to the analysis of a system with two degrees of freedom. For 

convenience of the analysis of motions we express the Hamiltonian of the reduced system in 
terms of Andoyer's canonical variables /19,20/. In Fig.5 GXYZ is a system of coordinates 

with origin at the ellipsoid center of mass and axes parallel to the corresponding axes of 
the fixed coordinate system OXYZ,K is the vector of the ellipsoid moment of momentum rela- 
tive to its center of mass, and GMN is a plane normal to Kwhich intersects the planes CX). 
and Gry along the straight lines GMand GiV, respectively. The canonical variables are L. 
I,,Is, 1, 'Pz* (03. The meaning of angular variables 1, 'pZ, Ip3 5s clear from Fig-S, and their cor- 
responding momenta are obviously L =iy cos 6,, 1, =K, I, = KcesS,. 

The momentum 1, is the length of the moment of momentum vector, and t and J3 are its 

projections, respectively, on the ellipsoid axis Gz and the vertical. 
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In the case of an ellipsoid only slightly different from a sphere the Hamiltonian of the 
reduced system in Andoyer's variables is of the form 

Usa = COS 6, sin 6, C0.s 1 + sin 6, 00s & COs 1 Cos qp2 - 

sin S,sin 1 sin (02 

a33 = COs 6, Cos 6, - sin 6, sin 6, cos 'pp 

cos 6, = I,iZ,, cos 6, = L/l, 

When e = o., motion of the ellipsoid relative to its center of mass is defined by the 
Hamiltonian N,= Zzai2A and represents the uniform rotation at the velocity qz'=Z&A about the 
moment of momentum vector of fixed magnitude and direction. We assume #is to be the unper- 
turbed motion and shall investigate the perturbed motion (with E #o) ) of the ellipsoid by 
the method of averaging /21/. 

In the system of canonical differential equations with Hamiltonian (10.1) the variables 
I!S, i,, 1 are slow and 'pp is rapid. The first approximation solution is obtained by the averag- 
ing of Hamiltonian (10.1) with respect to variable 'pz rejecting terms of the second and 
higher orders of smallness with respect to e. We find that in the first approximation the 
motion is defined by a system of equations with the Hamiltonian 

x=1-+ -$$-(2--:isinzfil) 

In the first approximation the variable: L,Z?, 1 vary with time as in the Euler-Poinsot 
motion, if inthelatter the quantity r=xt is taken as the time. The momentofmoment~vector 
is in the first approximation of constanfmagnitude and slowly precesses about the verticalat 
constant angular velocity t3rif3Z3, remaining at the constant angle 6,=arc cos (ZylZJ to it. 
Projection of the moment of momentum vector on the Gz axis oftheellipsoid slowly varies with 

time at the rate L’ =-X/81, which results in a slow variation of angle 6, between the Gz 
axis of the ellipsoid and the moment of momentum vector. The ellipsoid rapidly rotates about 
the moment of momentum vector with a slow varying angular velocity 9~' =ar/aZ,; it also ro- 
tates about its GZ axis at the slow varyingintimeangular velocity 1' =: XiSL. In a time 
interval of order a-' the slow variables L,Z,,Z are determined in the first approximation 
with an error of order E, while the error of the rapid variable wz determinationisof order 
unity. For a particular selection of initial data for which x vanishes, the quantities t 
and 1 are, besides Z,,also constant in the first approximation. In that case the instant 
vector of angular velocity is constant relative to the moving ellipsoid (and to the absolute 
space). 

More meaningful results can be obtained by taking as unperturbed instead of the motion 
of the ‘sphere, the more complex motion defined by the Hamiltonian (10.1) averagedwithrespect 
to the rapid and slow variables 'pz and 1. 

Let us represent Hamiltonian (10.1) in the form 

Function N, in (10.3) is of the first order of smallness with respect to E, and its 
value averaged with respect to 'pz and 1 is zero. The dots denote terms of orderofsmallness 
higher than the first. 

AS the unperturbed motion of the ellipsoid we take the motion defined by the Hamiltonian 

x,, + H,. In the unperturbed motion 

In the case of unperturbed motion Land Z, are constant, and taking into accountalsothe 
invariability of I,, we find that in unperturbed motion angles 6, and 6, are also constant. 
Thus in unperturbed motion the constant length vector K of the ellipsoid moment of momentum 
slowly precesses at constant angular velocity o3 = 3Hll$13 about the vertical,while remaining 
at the constant angle 6, = arc cos(Z,/Z,). The ellipsoid itself effects (when x#O ) a regular 
precession about vector Kand rotates. at constant angular velocity W, about its Gz axis which 
remains at constant angle 6, = arecos (L/I,) to the moment of moments vector, and rotating 
about it at constant angular velocity oz. 
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Let us show,as in /22/, the stability of the described above unperturbed motion of the el- 
lipsoid with respect to variables L,I, in the case of small perturbations of Hamiltonian 
(10.4). For this it is necessary to ascertain the nondegeneracy of the Hessian of function 
(10.4) /22/. We have 

(10.6) 

Since the quantity X is assumed nonzero for theunperturbed motion, the determinant (10.6) 
is nonzero for fairly small E, provided the ellipsoid semiaxes satisfy the inequality 

a i- b + 2c (10.7) 

It has, thus, been shown that in conformity with /22/ in the case of an ellipsoid only 
slightly differing from a sphere that, when condition (10.7) is satisfied, the variation of 
L and Ia over an infinite time interval is arbitrarily small. 

A more exact meaning of the above statement is as follows. When inequality (10.7) is 
satisfied, then for any p> 0 there exists a E* > 0 such that for all F from the interval 
0 <E < a* for perturbed motion ILit) - L(o) / < p. 1 f,(t) -f,(o) /<IL at any 1. 

This means that the length z%' of the moment of momentum vector and its angle 6, to the 
vertical remain close to their initial values at all 1. The angle 6,between the moment of 
momentum vector and the ellipsoid axis & (Fig.6) always remains close to its initial value. 

The frequencies wi (i =-= 1, 2, 3) will always remain close to their initial values, but the 
angles l(l),(~~(f),(~~(t) that correspond to them are generally not close to their values in un- 
perturbed motion calculated for one and the same instant of time. 

It should be stressed that the analysis in Sect.10 was carried out on the assumptionthat 
the ellipsoid is at all times in contact with the plane on which it moves. This assumptionis 
valid in the case of an ellipsoid only slightly differing from a sphere moving at some speci- 
fied initial angular velocity, since it follows from the theorem on the motion of the center 
of mass, and because the quantity ze" is arbitrarily small for fairly small E that the normal 
reaction of the plane is always positive (and close to the ellipsoid weight). The latter 
means that the ellipsoid does not jump over the plane at any time, but is in contact with it 
at 

1. 

2. 

3. 

4. 

5. 
6. 

7. 

8. 
9. 

10. 

Il. 

12. 

13. 

14. 

15. 

all times. 
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